Optimal feature selection for classifying a large set of chemicals using metal oxide sensors

نویسندگان

  • Thomas Nowotny
  • Amalia Z. Berna
  • Russell Binions
  • Stephen Trowell
چکیده

Using linear support vector machines, we investigated the feature selection problem for the application of all-against-all classification of a set of 20 chemicals using two types of sensors, classical doped tin oxide and zeolite-coated chromium titanium oxide sensors. We defined a simple set of possible features, namely the identity of the sensors and the sampling times and tested all possible combinations of such features in a wrapper approach. We confirmed that performance is improved, relative to previous results using this data set, by exhaustive comparison of these feature sets. Using the maximal number of different sensors and all available data points for each sensor does not necessarily yield the best results, even for the large number of classes in this problem. We contrast this analysis, using exhaustive screening of simple feature sets, with a number of more complex feature choices and find that subsampled sets of simple features can perform better. Analysis of potential predictors of classification performance revealed some relevance of clustering properties of the data and of correlations among sensor responses but failed to identify a single measure to predict classification success, reinforcing the relevance of the wrapper approach used. Comparison of the two sensor technologies showed that, in isolation, the doped tin oxide sensors performed better than the zeolite-coated chromium titanium oxide sensors but that mixed arrays, combining both technologies, performed best. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Chemical Sensor Arrays Using Mutual Information

We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maxi...

متن کامل

Optimal Sensor Selection for Classifying a Set of Ginsengs Using Metal-Oxide Sensors

The sensor selection problem was investigated for the application of classification of a set of ginsengs using a metal-oxide sensor-based homemade electronic nose with linear discriminant analysis. Samples (315) were measured for nine kinds of ginsengs using 12 sensors. We investigated the classification performances of combinations of 12 sensors for the overall discrimination of combinations o...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

A General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram

Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017